博客
关于我
业务工作流平台设计(二)
阅读量:441 次
发布时间:2019-03-06

本文共 406 字,大约阅读时间需要 1 分钟。

微软可以通过扩展现有技术实现业务工作流平台

微软的工作流解决方案(WF)虽然功能基础,但并非完整的业务工作流平台。从技术角度来看,构建一个完整的业务工作流平台并非难事,微软或许会在未来版本中实现这一目标。

在没有完整平台支持的情况下,我们需要从以下几个方面着手解决问题:

首先,业务领域具有各自独特的工作流程。这种需求可以通过为不同领域设置定制化模板来实现。其次,不同应用在同一领域中的差异性也可以通过扩展特定领域模板来处理。

数据集成是另一个关键环节。数据集成分为设计阶段和运行阶段。设计阶段主要涉及对角色、用户等信息的配置,而运行阶段则负责对审批数据的存储和合并计算。所有数据访问操作均需通过自定义活动来执行,这样可以确保操作的独立性和灵活性。

通过以上方法,我们可以逐步构建一个满足业务需求的工作流平台。目前应用的复杂性主要体现在模板配置和数据集成的实现上,但随着技术的不断进步,这些问题将得到更好的解决。

转载地址:http://uoxyz.baihongyu.com/

你可能感兴趣的文章
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>